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Program Scope:
Intermediate Temperature Cathode Materials 
Development
Advanced Anode Materials Development
Metallic Interconnect Materials Evaluation 
and Development
SOFC Stack Seal Development
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Presentation OutlinePresentation Outline
Intermediate Temperature Cathode Materials 
Development
Metallic Interconnect Materials Evaluation and 
Development

For each task:
Objective
Previous Status
Results
Future Work
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Intermediate Temperature Cathode Materials 
Development 

Intermediate Temperature Cathode Materials 
Development 
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Cathode Materials DevelopmentCathode Materials Development
Objective: Develop and optimize high performance, 
stable cathode materials for intermediate 
temperature SOFC

Variables:
Base composition, type and amount of dopant
Initial particle size distribution (calcination and milling conditions), 
fugitive phases
Sintering temperature and time

Approach:
Synthesis (glycine-nitrate) and characterization of candidate cathode 
powders (XRD, dilatometry, SEM, PSA, TGA, electrical conductivity)
Fabrication of cathodes on anode-supported membranes via screen 
printing and sintering
Evaluation of cathode performance by electrochemical testing and
SEM
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Sr-Doped LaFeO3 Cathode Development

Advantages:
•High ionic conductivity

•Rapid oxygen surface 
exchange kinetics

•TEC match to other 
components

•High electronic 
conductivity

•Iron is inexpensive B-
site constituent

Introduction of doped 
ceria layer improves 
performance

La(Sr)FeOLa(Sr)FeO33
3030--5050µµmm

YSZYSZ
77µµmm

AnodeAnode
~550~550µµmm

Ce(Sm)OCe(Sm)O22
33µµmm
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Anode-supported cell w/ LSF-20 cathode
(Previous status)

Anode-supported cell w/ LSF-20 cathode
(Previous status)
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Cell: LSF Cathode / SDC Interlayer / YSZ 
Electrolyte / Ni-YSZ anode

Fuel: 97% H2 / 3% H2O (Low Fuel 
Utilization)

Oxidant: Air

T(ºC) Power at 0.7V (W/cm2)

650 0.36

700 0.63

750 0.85

800 1.21
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Role of ceria layer:
Prevention of reaction between YSZ and LSF?

Role of ceria layer:
Prevention of reaction between YSZ and LSF?
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Mixtures of LSF and YSZ, heated to 1400ºC for 2 h, showed no evidence of zirconate 
formation.  (Contrary to case with LSCo and YSZ).  
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Role of ceria layer:
Prevention of reaction between YSZ and LSF?

Role of ceria layer:
Prevention of reaction between YSZ and LSF?

However, for T ≥ 1000ºC, LSF peaks were shifted, indicating expansion of lattice 
due to change in composition of perovskite phase.
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Results using ZrO2 and Y2O3 indicate Zr4+ from YSZ incorporated onto B-site of 
perovskite lattice; conclusion is supported by EDX results
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Impact of Zr4+ on LSF ConductivityImpact of Zr4+ on LSF Conductivity
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Significant reduction in electrical conductivity of LSF w/ increasing 
Zr content:

[ ] [ ] [ ] [ ] [ ]•••• ++=+ FeOFeFeLa ZrVFeFeSr 2''

Conclusion:  Ceria interlayer required for LSF cathodes sintered at T ≥ 1000ºC
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Enhancing LSF Sinterability
Goal: Modify the LSF cathode to sinter onto YSZ below 1000oC to avoid the LSF-YSZ 
interaction. Compositions of the type (La0.8Sr0.2)0.98Fe0.98M0.02O3 are being considered.
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(La0.8Sr0.2)0.98Fe0.98Cu0.02O3 Performance Data 

Initial performance data indicates significantly improved power density (1.4-1.8 W/cm2

at 750oC and 0.7V) for the new cathode material sintered on YSZ at 950oC. 
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Metallic Interconnect Materials 
Evaluation and Development

Metallic Interconnect Materials 
Evaluation and Development
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Metallic Interconnects for SOFCMetallic Interconnects for SOFC

Objectives:
Identify and quantify degradation processes in 
candidate alloys
Develop a cost-effective optimized material for 
intermediate temperature interconnect applications

Approach:
Screen testing of candidate alloys (chemical, electrical, 
mechanical properties)
Materials development

Surface modification (surface doping, protective coatings)
Bulk modification
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Screen testing of candidate alloysScreen testing of candidate alloys

Emphasis on “Chromia-forming” Ferritic Stainless 
Steels:

CTE match, conductive oxide scale, low cost, ease of 
fabrication

Screening Studies

Electrical Screen

Chemical Screen

Mechanical Screen

ASR measurements under SOFC exposure conditions

Oxidation in air, fuel, and dual atmosphere environments (scale 
thickness, composition, and microstructure)
Chemical compatibility with alkaline earth-aluminosilicate glass seals
Oxide scale thermodynamic stability

Investigation of thermal expansion
Interfacial bonding strength with glass seals
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Thermal expansion
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Selected alloys offer good CTE match to SOFC 
components
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Electrical Resistance of Scales on 
Selected FSS
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Coupon samples were pre-oxidized in air at 800oC for 100h before 
carrying out tests in air at 800oC.
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Scale Resistance for Crofer22APU 
at 700, 800ºC (in air)
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Microstructures of cross-sections of 
samples from conductivity tests (in air)

800oC, 500h 700oC, 500h

Pt contactScaleCrofer22 APU

(Cr,Mn)3O4

Cr3O2

(Al,Ti,La)xOyMetal 
matrix

Note: Reduced Cr volatility due to (Cr,Mn)3O4 outer scale
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ASR of Crofer22 APU and Effects of 
Conductive Oxide Coatings
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Both bare and coated samples were pre-oxidized in air at 
800oC for 100h before carrying out tests in air at 800oC.
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Oxidation Behavior of Crofer22APU:
Dual Atmosphere vs. Air

Air exposure at both sides Air-side of dual exposure

Fe

Cr

Mn

Fe

Cr

Mn

Repeated EDX analyses on Crofer22APU tested under dual exposure 
indicate the presence of Fe in the scale
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Dual Atmosphere w/ Thermal Cycling

Thermal 
cycling tests:

5ºC/min to 
800oC, 100h 
dwell

3 cycles

XRD patterns 
from the airside 
of dual test vs. 
air exposure only

M = Fe-Cr Substrate
C = Cr2O3
S = MnCr2O4
O = Fe2O3 Iron Oxide

Crofer22 APU in Air Only

Crofer22 APU Dual 
Atmosphere Test (Air 
Side)
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Airside under dual exposure w/ cycling

A

A-AB

C

C-CB-B
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Elemental mapping of scale 
formed at the air side
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Future Work (Short-term) 

Continue to study role of dual atmosphere exposure on 
corrosion of alloys

Extend screening studies to include ZMG232, a new 
ferritic stainless composition developed by Hitachi Steel 
for SOFC applications

Study the evaporation of scale on metallic interconnect

Investigate the feasibility of doping interconnect 
surface to minimize scale growth / electrical resistance
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Compositions of FSS
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